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Abstract. This study examined the effect of Perceived Contrast Enhancing (PCE) lens 

technology on traffic signal detection and recognition for color-normal and color-

deficient observers compared to a neutral density lens. Eighteen color-normal and 

eighteen color-deficient participants performed a visual-motor task while wearing two 

different PCE lenses with specific spectral transmissions as well as a neutral-density 

lens. At random intervals, simulated traffic light signals were presented 5° to the right 

and left of the participant’s focal point, to which participants identified signal color 

using a three-button input device. Response time and error rate were recorded. We 

found that lens tint did not have a significant main effect on response time and error 

rate. The data collected in this study lends considerable evidence to the assumption 

that PCE lenses will not impair driving.  
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1 Introduction 

Approximately 8 % of males and 0.4 % of females today are color-deficient, and a large 

majority of those are color-deficient in the red-green spectrum [1]. A majority (~75 %) of 

the color-deficient population is made up of anomalous trichromats, meaning one of their 

color receptors is altered as compared to normal. Nearly all of the rest of the color-deficient 

world are dichromats, meaning they completely lack one of the three color receptors and 

have two-dimensional color discrimination as opposed to three-dimensional. As a result of 

these deficiencies, the ability of the color-deficient population to discriminate between red, 

yellow, and green traffic signals is reduced or, in the case of dichromats, completely absent 

[2]. Participating in traffic depends on the detection of colors and colored signals. Because 

tinted sunglass lenses can negatively affect reaction time and recognition rates to those 

signals for color-deficient users [3], [4], and [5], it is important to determine which sunglass 
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lenses are acceptable to use for the color-normal and color-deficient population. Due to 

these findings, sunglass standards around the world enforce coloration requirements on 

sunglasses with the goal of limiting color distortion. These properties are established to 

define the amount of chromatic influence of red, yellow, and green traffic signals as viewed 

with a background of average daylight. The American National Standards Institute (ANSI 

Z80.3-2018) [8] regulates these chromatic influences with three criteria: 1) Color limits: 

Each respective chromatic coordinate must reside within a specified region of the 

Commission Internationale de l’Eclairage (CIE) 1931 chromaticity diagram [9], 2) 

Transmittance properties: Each filter must allow a minimum amount of total light and 

respective colored light through, and  3) Spectral Transmittance: All attenuation must not 

fall below a set threshold. 

The objective of our experiment was to assess the extent to which reaction time and error 

rate may be affected by PCE lens technology for color-deficient subjects when compared 

to a neutral density lens, using traffic signals that comply with US national standards laid 

out by the Institute of Traffic Engineers (ITE), Australian national standards, and ANSI 

guidelines [6], [7], [8], [9], and [10]. Our hypotheses are as follows:  

H1: Color-deficient subjects’ reaction times and error rates are higher than their color-

normal counterparts’. 

H2: There is no effect of PCE lenses that fail and other lenses that currently pass ANSI 

standards on reaction time and error rate. 

2 Method 

2.1 Study Design 

Sport performance frames (Oakley Radar EV) were used to cover a wide field of view 

and mitigate backside glare effects. Fig. 1 shows the three lenses used which consisted of a 

neutral density pair (16 % visible light transmission VLT, shown in green) and two pairs of 

PRIZM lenses (18 % VLT, shown in red, passes ANSI 4.10.2.3, and 34 % VLT, shown 

in blue, fails ANSI 4.10.2.3). 

 



Fig. 1. Spectral Transmissions of PRIZM Golf (blue, 34%VLT, fail ANSI 4.10.2.3), PRIZM 

Road (red, 18%VLT, pass ANSI 4.10.2.3) and Dark Violet (green, 16%VLT, pass ANSI 4.10.2.3). 

2.2 Sample 

Our sample utilized thirty-six healthy males between the ages of 14 and 54 (M = 36.4 yrs, 

SD = 9.0 yrs), consisting of 18 color-normal males and 18 color-deficient males. Pre-study 

all participants conducted a color discrimination task using a light box and Farnsworth-

Munsell 100 Hue Test to ensure their grouping in color-normal or color-deficient. 

Distinctions were not made between the different types of color deficiencies. All 

participants had a visual acuity of at least 20/25, and participants wore their non-tinted 

correctional lenses behind the experiment’s tinted lenses if necessary, to achieve this visual 

acuity. 

2.3 Apparatus 

The general study apparatus was replicating parts of [5] with minor alterations, discussed 

below (see Fig. 2). Participants viewed a target in the center of a computer monitor at a 

1.5 m working distance to be able to view the secondary task easily on a conventional 

computer monitor. Three separate bulbs were laid horizontally (spanning 1 cm) on either 

side in the same space on either side so intensity could be individually regulated. At the 

working distance of 1.5 m and angle 5º size constancy mandated the use of LED bulbs with 

3 mm diameter. Following that, there were no significant positional cues for each of the 

bulbs that could influence the experiment. Additionally, we positioned our participants’ eye 

level at 7 cm beneath the signal level rather than at the level of the bulbs. This corresponds 

to a 200 mm traffic light at 100 m being 4.572 m off the ground, which is the minimum 

height a traffic signal can be in the U.S. according to the ITE [10]. Signals were created 

using three differently colored, high-intensity LED bulbs (red, yellow, and green). We 

referenced standards outlined by ITE to find the minimum intensity of a traffic signal from 

the vantage point of -2.5º vertically and 5º horizontally, to mimic our study design. We 

converted this to lux at 100 m and used different resistors for our LED bulbs until we were 

able to match that lux from 1.5 m. For red, a 220 ohm resistor was used to achieve the 

luminous intensity of 0.033 cd. For yellow, a 47 ohm resistor was used to achieve 0.081 cd, 

and for green a 1.5 kohm resistor was used to achieve 0.021 cd. Each of these luminous 

intensities are the 1.5 m equivalent of the minimum allowed intensity of a 200 mm traffic 

signal at 100 m, which is the standard Australian practice utilized by Dain [4], [6], and [7]. 

Bulb rise time to full intensity was negligible. Table 1 references the respective ITE and 

CIE specifications. 



 
Fig. 2. Apparatus with computer monitor, keyboard, mouse, led bulbs, and measurements. Front 

view (left), side view (right).  

 

2.4 Experiment 

The experiment was divided into three distinct sections. The first section consisted of 

measuring reaction times for each finger on a three-click mouse. The reaction times from 

the first section were used to normalize our response data for the different dexterities among 

participants and among fingers of each participant. The participant was instructed to place 

the middle finger of their dominant hand on the center button of the mouse, and their other 

two fingers on the surrounding buttons. The left button corresponded to red, middle to 

yellow, and right to green. The lights flashed exclusively on the right-hand side for this 

section of the experiment, with the participant’s gaze fixated directly upon them. The 

participant was instructed to look at the lights on the right-hand side only and respond as 

quickly and accurately as possible to the color of these flashing lights. Each light would 

Table 1. Minimum allowed luminous intensity of a traffic light as outlined by ITE and Chromaticity 

coordinates of each of bulb, from spectral radiance measurements made with an AsenseTek Essence 

telespectroradiometer, all fall within the required CIE 1931 specifications as laid out by ANSI. 

Traffic Signals Red Yellow Green 

Minimum luminous intensity cd 150 373 196 

Luminous emittance at 100 m lx .015 .0373 .0196 

Right LEDs    

Luminous intensity cd .035 .081 .047 

Luminous emittance at 1.5 m lx .0135 .036 .021 

Left LEDs    

Luminous intensity cd .033 .08 .051 

Luminous emittance at 1.5 m lx .0146 .0355 .018 

Bulb color    

x – coordinate 0.583 0.213 0.688 

y – coordinate 0.413 0.688 0.309 

 



stay on for 3 s, with a 1 s break in between each individual flash. To ensure we had a good 

measure of each participants’ true reaction time, this task would not stop until the previous 

9 responses were all correct and within ~150 ms of each other. The participant carried out 

this task twice to ensure good data was collected. For data analysis, response times for each 

button were normalized by subtracting the average reaction time of the last 9 responses for 

that button. 

The second section consisted of a single run of the same procedure as section one, but 

while wearing a lens. This section served as an adaptation period for the lens in question 

before the participant moved onto section three. Lens order was randomized using a python 

code, and the participant would perform sections two and three in succession before 

switching to the next lens. 

The third section consisted of the experiment proper, in which the secondary task was 

utilized. We used Tetris as our secondary task, as it is a well-recognized visual-motor 

secondary task. The Tetris was displayed on a monitor behind the LED lights. The center 

of the game was aligned in the middle of the two sets of LED lights, and was located 7 cm 

below the level of the lights so as to be even with the participant’s eye level. To control the 

Tetris, the participant used their non-dominant hand on the arrow keys of a standard 

QWERTY keyboard. In cases where the participant was left-handed but used a mouse with 

their right hand, they used their left hand on the keyboard. The participant was instructed to 

play Tetris and keep their gaze fixated straight ahead on the task. As they played, an LED 

bulb would flash on either the left or the right side, and the participant would respond to the 

color of the flash with the input device, and their reaction times were recorded. The lights 

flashed in random intervals of between 6 and 12 s and stayed on for 3 s. Failure to respond 

to the light in the 3 s that it stayed on was recorded as an error. Each run consisted of 24 

randomized presentations of the LED lights, so that each side and color combination was 

presented 4 times. This was done 3 times for each of the three lenses, for a total of 72 data 

points for each lens per participant. The participant was given the opportunity to take a short 

rest in between each trial, but most opted to not take the break. The participants informed 

the experimenter immediately if they had made a mistake in responding to a light and these 

data points were not used in analysis. Observers were not given feedback about which lights 

were correctly or incorrectly identified. 

3 Results 

We conducted a mixed 2 (color vision) x 3 (lens color) ANOVA to analyze the interaction 

of reaction time and error rate. The normality assumption was checked graphically using 

histograms and Q-Q plots as well as by applying the Shapiro-Wilk test. Effect sizes are 

classified using Cohen’s benchmark: small (η², ω² = .01), medium (η², ω² = .06), and large 

(η², ω² = .14). Table 3 summarizes the descriptive results for color vision and lens color. 



 
 

There were significant main effects of color vision on response times (F1, 102 = 11.93, 

p < .001, η = .105, ω = .095) and on error rate (F1, 102 = 39.53, p < .001, η = .279, ω = .27), 

but this was expected. There were no significant main effects of lens on response times 

(F2, 102 = 0.12, p = .89, η = .002, ω < .001) or on error rates (F2, 102 = .099, p = .91, η = .002, 

ω < .001), which you can see in Fig. 3. There were no significant two-way interactions 

between lens tint and color vision for reaction time (F2, 102 = .11, p = .892, η2 = .002, 

ω2 < .001) or for error rate (F2, 102 = 0.03, p = .968, η2 = .002, ω2 < .001). Additional 

Bonferroni post-hoc tests revealed that there were no significant differences in response 

times or error rate between individual lenses. 

 
Fig. 3. Reaction times (left), error rates (right). 

4 Discussion 

There was no significant difference in mean reaction time or error rate across all lenses for 

color-normal participants. For color-deficient participants, although the difference was not 

statistically significant, the lens with the slowest mean adjusted reaction rates was the 

PRIZM™ Road lens, which currently passes the mentioned ANSI standards. PRIZM™ 

Golf (does not pass ANSI) yielded the fastest reaction times for color-deficient participants. 

Although the differences in these results were not statistically significant, the question 

remains as to whether they show any practical significance. 

Table 3. Minimum allowed luminous intensity of a traffic light as outlined by ITE. 

Lens 

Color-normal Color-deficient 

MRT 

[s] 

SDRT 

[s] 

Merror 

[-] 

SDerror 

[-] 

MRT 

[s] 

SDRT 

[s] 

Merror 

[-] 

SDerror 

[-] 

Dark Violet 0.695 0.368 0.031 0.054 0.729 0.432 0.195 0.233 

PRIZM Road 0.695 0.394 0.030 0.042 0.761 0.452 0.211 0.215 

PRIZM Golf 0.695 0.374 0.040 0.040 0.723 0.453 0.216 0.224 

 



The fact that PRIZM™ Golf yielded the slowest mean adjusted reaction times raises 

questions about the validity of current standards regarding transmission rates. 

The practical significance of our results is best illuminated by a simple rates problem. 

At 96.56 km/h (60 mph), it takes an average of 4.5 seconds and around 25 m to stop a car 

completely. According to our data, and by looking at reaction times (Fig. 3), the highest 

difference between lenses for color-deficient participants is ~30 ms or 0.81 m travelled 

distance. Therefore, if a color-deficient person was driving a car while wearing a pair of 

PCE lenses, they might expect to stop for a sudden red light change 0.81 m later than they 

would have if wearing a neutral density lens. This distance, when taking into account all of 

the other external factors that can influence the braking distance of a car, would have 

minimal effects on braking in time for an intersection as opposed to ending up in the middle 

of it. 

In conclusion, according to the data we gathered, we believe that Oakley PCE lenses 

offer solely a subjective change in our perception, as they don’t appear to cause any 

significant decrease in reaction time or error rate. Especially in the light of rapidly changing 

transportation paradigms (Level 5 automation and human-robot interaction) and novel 

communication between traffic participants (e.g., via external HMIs), additional studies 

have to be conducted around lens technology and signal perception. 
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